Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 123: 110713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523968

RESUMO

microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/metabolismo , Genes Supressores de Tumor , Oncogenes , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética
2.
Int Immunopharmacol ; 121: 110546, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364331

RESUMO

The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Metilaminas , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerose/metabolismo
4.
Infect Agent Cancer ; 18(1): 3, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658631

RESUMO

The role of gut microbiota and its products in human health and disease is profoundly investigated. The communication between gut microbiota and the host involves a complicated network of signaling pathways via biologically active molecules generated by intestinal microbiota. Some of these molecules could be assembled within nanoparticles known as outer membrane vesicles (OMVs). Recent studies propose that OMVs play a critical role in shaping immune responses, including homeostasis and acute inflammatory responses. Moreover, these OMVs have an immense capacity to be applied in medical research, such as OMV-based vaccines and drug delivery. This review presents a comprehensive overview of emerging knowledge about biogenesis, the role, and application of these bacterial-derived OMVs, including OMV-based vaccines, OMV adjuvants characteristics, OMV vehicles (in conjugated vaccines), cancer immunotherapy, and drug carriers and delivery systems. Moreover, we also highlight the significance of the potential role of these OMVs in diagnosis and therapy.

5.
ChemMedChem ; 18(3): e202200506, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357328

RESUMO

Active targeting using biological ligands has emerged as a novel strategy for the targeted delivery of diagnostic agents to tumor cells. Conjugating functional targeting moieties with diagnostic probes can increase their accumulation in tumor cells and tissues, enhancing signal detection and, thus, the sensitivity of diagnosis. Due to their small size, ease of chemical synthesis and site-specific modification, high tissue penetration, low immunogenicity, rapid blood clearance, low cost, and biosafety, peptides offer several advantages over antibodies and proteins in diagnostic applications. Epidermal growth factor receptor (EGFR) is one of the most promising cancer biomarkers for actively targeting diagnostic and therapeutic agents to tumor cells due to its active involvement and overexpression in various cancers. Several peptides for EGFR-targeting have been identified in the last decades, which have been obtained by multiple means including derivation from natural proteins, phage display screening, positional scanning synthetic combinatorial library, and in silico screening. Many studies have used these peptides as a targeting moiety for diagnosing different cancers in vitro, in vivo, and in clinical trials. This review summarizes the progress of EGFR-targeting peptide-based assays in the molecular diagnosis of cancer.


Assuntos
Neoplasias , Biblioteca de Peptídeos , Humanos , Peptídeos/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores ErbB/metabolismo , Ligantes , Linhagem Celular Tumoral
6.
Int Immunopharmacol ; 114: 109581, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36527874

RESUMO

Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Animais , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Mamíferos , Proteínas Repressoras/metabolismo
7.
Front Oncol ; 12: 1042196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483029

RESUMO

MicroRNAs (miRNAs) are emerging as a significant modulator of immunity, and their abnormal expression/activity has been linked to numerous human disorders, such as cancer. It is now known that miRNAs potentially modulate the production of several metabolic processes in tumor-associated immune cells and indirectly via different metabolic enzymes that affect tumor-associated signaling cascades. For instance, Let-7 has been identified as a crucial modulator for the long-lasting survival of CD8+ T cells (naive phenotypes) in cancer by altering their metabolism. Furthermore, in T cells, it has been found that enhancer of zeste homolog 2 (EZH2) expression is controlled via glycolytic metabolism through miRNAs in patients with ovarian cancer. On the other hand, immunometabolism has shown us that cellular metabolic reactions and processes not only generate ATP and biosynthetic intermediates but also modulate the immune system and inflammatory processes. Based on recent studies, new and encouraging approaches to cancer involving the modification of miRNAs in immune cell metabolism are currently being investigated, providing insight into promising targets for therapeutic strategies based on the pivotal role of immunometabolism in cancer. Throughout this overview, we explore and describe the significance of miRNAs in cancer and immune cell metabolism.

8.
Future Oncol ; 18(38): 4209-4231, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519554

RESUMO

Increasing data have shown the significance of various miRNAs in malignancy. In this regard, parallel to its biological role in normal tissues, miRNA-128 (miR-128) has been found to play an essential immunomodulatory function in the process of cancer initiation and development. The occurrence of the aberrant expression of miR-128 in tumors and the unique properties of miRNAs raise the prospect of their use as biomarkers and the next generation of molecular anticancer therapies. The function of miR-128 in malignancies such as breast, prostate, colorectal, gastric, pancreatic, esophageal, cervical, ovarian and bladder cancers and hepatocellular carcinoma is discussed in this review. Finally, the effect of exosomal miR-128 on cancer resistance to therapeutics and cancer immunotherapy in certain malignancies is highlighted.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Neoplasias Urogenitais , Masculino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Próstata/metabolismo
9.
Int Immunopharmacol ; 110: 109074, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35978522

RESUMO

Oxysterols are cholesterol metabolites generated in the liver and other peripheral tissues as a mechanism of removing excess cholesterol. Oxysterols have a wide range of biological functions, including the regulation of sphingolipid metabolism, platelet aggregation, and apoptosis. However, it has been found that metabolites derived from cholesterol play essential functions in cancer development and immunological suppression. In this regard, research indicates that 27-hydroxycholesterol (27-HC) might act as an estrogen, promoting the growth of estrogen receptor (ER) positive breast cancer cells. The capacity of cholesterol to dynamically modulate signaling molecules inside the membrane and particular metabolites serving as signaling molecules are two possible contributory processes. 27-HC is a significant metabolite produced mainly through the CYP27A1 (Cytochrome P450 27A1) enzyme. 27-HC maintains cholesterol balance biologically by promoting cholesterol efflux via the liver X receptor (LXR) and suppressing de novo cholesterol production through the Insulin-induced Genes (INSIGs). It has been demonstrated that 27-HC is able to function as a selective ER regulator. Moreover, enhanced 27-HC production is in favor of the growth of end-stage malignancies in the brain, thyroid organs, and colon, as shown in breast cancer, probably due to pro-survival and pro-inflammatory signaling induced by unbalanced levels of oxysterols. However, the actual role of 27-HC in cancer promotion and progression remains debatable, and many studies are warranted to be performed to unravel the precise function of these molecules. This review article will summarize the latest evidence on the deleterious or beneficial functions of 27-HC in various types of cancer, such as breast cancer, prostate cancer, colon cancer, gastric cancer, ovarian cancer, endometrial cancer, lung cancer, melanoma, glioblastoma, thyroid cancer, adrenocortical cancer, and hepatocellular carcinoma.


Assuntos
Neoplasias da Mama , Oxisteróis , Neoplasias da Mama/metabolismo , Colesterol/metabolismo , Humanos , Hidroxicolesteróis , Masculino , Oxisteróis/metabolismo
10.
J Med Virol ; 94(10): 4611-4627, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689351

RESUMO

The field of immunometabolism investigates and describes the effects of metabolic rewiring in immune cells throughout activation and the fates of these cells. Recently, it has been appreciated that immunometabolism plays an essential role in the progression of viral infections, cancer, and autoimmune diseases. Regarding COVID-19, the aberrant immune response underlying the progression of diseases establishes two major respiratory pathologies, including acute respiratory distress syndrome (ARDS) or pneumonia-induced acute lung injury (ALI). Both innate and adaptive immunity (T cell-based) were impaired in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Current findings have deciphered that macrophages (innate immune cells) are involved in the inflammatory response seen in COVID-19. It has been demonstrated that immune system cells can change metabolic reprogramming in some conditions, including autoimmune diseases, cancer, and infectious disease, including COVID-19. The growing findings on metabolic reprogramming in COVID-19 allow an exploration of metabolites with immunomodulatory properties as future therapies to combat this hyperinflammatory response. The elucidation of the exact role and mechanism underlying this metabolic reprograming in immune cells could help apply more precise approaches to initial diagnosis, prognosis, and in-hospital therapy. This report discusses the latest findings from COVID-19 on host metabolic reprogramming and immunometabolic responses.


Assuntos
Doenças Autoimunes , COVID-19 , Neoplasias , Síndrome do Desconforto Respiratório , Humanos , Imunidade Inata , SARS-CoV-2
11.
Biomed Pharmacother ; 148: 112760, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228062

RESUMO

Glioblastoma (GB) is a highly aggressive cancer of the central nervous system, occurring in the brain or spinal cord. Many factors such as angiogenesis are associated with GB development. Angiogenesis is a procedure by which the pre-existing blood vessels create new vessels that play an essential role in health and disease, including tumors. Also, angiogenesis is one of the significant factors thought to be responsible for treatment resistance in many tumors, including GB. Hence, an improved understanding of the molecular processes underlying GB angiogenesis will pave the way for developing potential new treatments. Recently, it has been found that microRNAs (miRNAs) and exosomal miRNAs have a crucial role in inducing or inhibiting the angiogenesis process in GB development. A better knowledge of the miRNA's regulation pathway in the angiogenesis process in cancer offers unique mechanistic insight into the mechanism of tumor-associated neovascularization. Because of advancements in miRNA characterization and delivery methods, miRNAs can also be employed in clinical settings as potential biomarkers for anti-angiogenic treatment response as well as therapies targeting tumor angiogenesis. The recent finding and insights about miRNAs' angioregulatory role and exosomal miRNAs in GB are provided throughout the review. Also, we discuss the new concept of miRNAs-based therapies for GB in the future.


Assuntos
Exossomos/metabolismo , Glioblastoma/patologia , MicroRNAs/metabolismo , Neovascularização Patológica/patologia , Humanos , Inflamação/patologia , Neoplasias/patologia
12.
Mol Med ; 28(1): 10, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093033

RESUMO

BACKGROUND: Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT: It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION: Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.


Assuntos
Biofilmes , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Interações Hospedeiro-Patógeno , Infecções/etiologia , Infecções/metabolismo , Neoplasias/complicações , Animais , Biofilmes/crescimento & desenvolvimento , Biomarcadores , Gerenciamento Clínico , Metabolismo Energético , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Infecções/diagnóstico , Infecções/terapia , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/terapia , Especificidade de Órgãos
13.
Front Oncol ; 12: 1067974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793341

RESUMO

A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.

14.
Biomed Pharmacother ; 145: 112352, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34840032

RESUMO

A growing body of documents shows microbiota produce metabolites such as short-chain fatty acids (SCFAs) as crucial executors of diet-based microbial influence the host and bacterial pathogens. The production of SCFAs depends on the metabolic activity of intestinal microflora and is also affected by dietary changes. SCFAs play important roles in maintaining colonic health as an energy source, as a regulator of gene expression and cell differentiation, and as an anti-inflammatory agent. Additionally, the regulated expression of virulence genes is critical for successful infection by an intestinal pathogen. Bacteria rely on sensing environmental signals to find preferable niches and reach the infectious state. This review will present data supporting the diverse functional roles of microbiota-derived butyrate, propionate, and acetate on host cellular activities such as immune modulation, energy metabolism, nervous system, inflammation, cellular differentiation, and anti-tumor effects, among others. On the other hand, we will discuss and summarize data about the role of these SCFAs on the virulence factor of bacterial pathogens. In this regard, receptors and signaling routes for SCFAs metabolites in host and pathogens will be introduced.


Assuntos
Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Acetatos/metabolismo , Animais , Bactérias/patogenicidade , Butiratos/metabolismo , Dieta , Humanos , Propionatos/metabolismo
15.
Future Oncol ; 18(39): 4415-4442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36651359

RESUMO

Cholesterol is an essential lipid that serves several important functions, including maintaining the homeostasis of cells, acting as a precursor to bile acid and steroid hormones and preserving the stability of membrane lipid rafts. 25-hydroxycholesterol (25-HC) is a cholesterol derivative that may be formed from cholesterol. 25-HC is a crucial component in various biological activities, including cholesterol metabolism. In recent years, growing evidence has shown that 25-HC performs a critical function in the etiology of cancer, infectious diseases and autoimmune disorders. This review will summarize the latest findings regarding 25-HC, including its biogenesis, immunomodulatory properties and role in innate/adaptive immunity, inflammation and the development of various types of cancer.


Assuntos
Hidroxicolesteróis , Neoplasias , Humanos , Hidroxicolesteróis/metabolismo , Colesterol/metabolismo , Imunidade Inata , Neoplasias/etiologia
16.
Int Immunopharmacol ; 101(Pt A): 108192, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607230

RESUMO

The mounting evidence regarding the pathogenesis of COVID-19 indicated that the cytokine storm has an axial role in the severity of this disease, which may lead to thrombotic complications, acute respiratory distress syndrome (ARDS), and myocardial damage, among other consequences. It has recently been demonstrated that statins are known to have anti-viral, anti-inflammatory, anti-thrombotic, and immunomodulatory features; however, their advantage has not been evaluated in COVID-19. This study aimed to investigate the protective effects of lovastatin in intensive care unit (ICU) patients with COVID-19. The case-control study consists of 284 ICU patients, which classified into three groups as follows: 1) the patients who no received lovastatin as a control (92 patients), 2) patients received 20 mg per day lovastatin (99 patients), and 3) patients received 40 mg per day lovastatin (93 patients). Each group's demographic and clinical parameters, along with CRP, interleukin (IL)-6, IL-8 levels, and mortality rate, were studied in three-time points. The results showed that there was no statistically significant difference between our study groups in terms of age and sex. (P > 0.05). Besides, in patients, receiving lovastatin the CRP, IL-6, IL-8 levels were significantly decreased from T1 to T3 than to the control group. Our results also showed that the use of lovastatin in COVID-19 patients significantly reduced the length of hospitalization in the ICU compared with the control group. In addition, our results showed that the mortality rate in patients receiving lovastatin was lower when compared to the control group; however, this difference was not statistically significant. Since the cytokine storm is a significant factor in the pathology of SARS-CoV-2, our findings highlighted the potential use of lovastatin to mitigate the inflammatory response induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/farmacologia , Tratamento Farmacológico da COVID-19 , Lovastatina/farmacologia , Adulto , Anti-Inflamatórios/uso terapêutico , COVID-19/sangue , Estudos de Casos e Controles , Cuidados Críticos/métodos , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas/efeitos dos fármacos , Feminino , Hospitalização , Humanos , Unidades de Terapia Intensiva , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lovastatina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Receptores Imunológicos/metabolismo , Fatores Sexuais
17.
Microb Pathog ; 158: 105115, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34332069

RESUMO

In recent years, extreme attention has been focused on the role of immunometabolism in the regulation of immune cell responses in healthy individuals during infection, autoimmunity, and cancer. In the infection biology area, it has been shown that there is a close relationship between the immune system and the host metabolic changes. Brucella species is an intracellular coccobacillus that infects humans and mammals, which led to brucellosis. Brucella species with host-specific evolutionary mechanisms allow it to hide from or manipulate cellular immunity and achieve intracellular persistence. Intracellular bacterial pathogens such as Brucella species also employ host cell resources to replicate and persist inside the host. Targeting these host systems is one promising strategy for developing novel antimicrobials to tackle intracellular infections. This study will summarize the role of metabolic reprogramming in immune cells and their relationship to brucellosis.


Assuntos
Brucella , Brucelose , Animais , Evolução Biológica , Humanos
18.
Int Immunopharmacol ; 97: 107684, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33932696

RESUMO

A cell-surface heparan proteoglycan called Syndecan-1 (SDC-1) has multiple roles in healthy and pathogenic conditions, including respiratory viral infection. In this study, we explore the dynamic alternation in the levels of SDC-1 in cases with COVID-19. A total of 120 cases definitely diagnosed with COVID-19 were admitted to the Firoozgar Hospital, Tehran, Iran, from December 1, 2020, to January 29, 2021, and included in our study. Also, 58 healthy subjects (HS) were chosen as the control group. Patients were classified into two groups: 1) ICU patients and (63 cases) 2) non-ICU patients (57 cases). The dynamic changes of serum SCD-1, CRP, IL-6, IL-10, IL-18, and Vit D levels a well as the disease activity were investigated in three-time points (T1-T3). Our results indicated that the COVID-19 patients had significantly increased SCD-1, CRP, IL-6, IL-10, and IL-18 levels than in HS, while the Vit D levels in COVID-19 patients were significantly lower than HS. Further analysis demonstrated that the SCD-1, CRP, IL-6, IL-10, and IL-18 levels in ICU patients were significantly higher than in non-ICU patients. Tracking dynamic changes in the above markers indicated that on the day of admission, the SCD-1, CRP, IL-6, IL-10, and IL-18 levels were gradually increased on day 5 (T2) and then gradually decreased on day 10 (T3). ROC curve analysis suggests that markers mentioned above, SDC-1, IL-6, and IL-18 are valuable indicators in evaluating the activity of COVID-19. All in all, it seems that the serum SDC-1 levels alone or combined with other markers might be a good candidate for disease activity monitoring.


Assuntos
COVID-19/diagnóstico , Sindecana-1/sangue , Adulto , Idoso , Biomarcadores/sangue , COVID-19/mortalidade , Cuidados Críticos , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Interleucina-10/sangue , Interleucina-18/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Curva ROC , Receptores Imunológicos/sangue , Índice de Gravidade de Doença , Fatores de Tempo , Vitamina D/sangue
19.
Biomed Pharmacother ; 139: 111619, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33906079

RESUMO

Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.


Assuntos
Anticarcinógenos/farmacologia , Carcinogênese/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacologia , Microbiota , Animais , Microbioma Gastrointestinal , Humanos
20.
IUBMB Life ; 72(7): 1271-1285, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32150327

RESUMO

Biofilms are microbial communities established in the self-produced extracellular substances that include up to 80% of associated microbial infections. During biofilm formation, bacterial cells shift from the planktonic forms to aggregated forms surrounded by an extracellular polymeric substance. The bacterial biofilm shows resistance against immune reactions as well as antibiotics and is potentially able to cause disorders by both device-related and nondevice-related infections. The nondevice-related bacterial biofilm infections include dental plaque, urinary tract infections, cystic fibrosis, otitis media, infective endocarditis, tonsillitis, periodontitis, necrotizing fasciitis, osteomyelitis, infectious kidney stones, and chronic inflammatory diseases. In this review, we will summarize and examine the literature about bacterial biofilm infections unrelated to indwelling devices.


Assuntos
Infecções Bacterianas/microbiologia , Biofilmes/crescimento & desenvolvimento , Animais , Cateteres de Demora , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA